Lecture 8:
 Sequential Networks and Finite State Machines

CSE 140: Components and Design Techniques for Digital Systems
Spring 2014

CK Cheng, Diba Mirza
Dept. of Computer Science and Engineering
University of California, San Diego

Sequential Networks

1. Components F-Fs

2. Specification
3. Implementation: Excitation Table

Specification

- Combinational Logic
- Truth Table
- Boolean Expression
- Logic Diagram (No feedback loops)
- Sequential Networks: State Diagram (Memory)
- State Table and Excitation Table
- Characteristic Expression
- Logic Diagram (FFs and feedback loops)

Specification: Finite State Machine

- Input Output Relation
- State Diagram (Transition of States)
- State Table
- Excitation Table (Truth table of FF inputs)
- Boolean Expression
- Logic Diagram

Specification: Examples

- Transition from circuit to finite state machine representation
- Netlist $=>$ State Table => State Diagram => Input Output Relation
- Example 1: a circuit with D Flip Flops
- Example 2: a circuit with other Flip Flops

Building Sequential Circuits and describing their behavior

The Behavior Effects

How the customer explained it

What operations installed

How the project leader understood it

How the customer was billed

How the analyst designed it

How it was supported

How the programmer wrote it

Create your own cartoon at www.projectcartoon.com

How the business consultant described
it

What the customer really needed

How the project was documented

What we will learn:

1. Given a sequential circuit, describe its behavior over time
2. Given the behavior of a sequential circuit, implement the circuit

Sequential Circuit: Wall-E

How does Wall-E behave?

What does it mean to describe the behavior of a sequential circuit

Specify how the output of the circuit changes as a function of inputs and the state of the circuit

PI Q: What is the difference between the state of a circuit and its output?
A. The output is independent of the state
B. The output and state are the same thing
C. The state is special type of output that is fed back into the circuit
D. The state is input information that is independent of previous outputs

State: What is it? Why do we need it?

Symbol/ Circuit
Behavior over time

What is the expected output of the counter over time?

State: What is it? Why do we need it?

Symbol/ Circuit
Behavior over time

PI Q: At time t_{1}, what information is needed to produce the output of the counter at the next rising edge of the clock (i.e t_{2})?
A. All the outputs of the counter until t_{1}
B. The initial output of the counter at time $t=0$
C. The output of the counter at current time t_{1}
D. We cannot determine the output of the counter at t_{2} prior to $t_{2_{12}}$

State: What is it? Why do we need it?

- The state is distilled output information that tells us everything we need to know to produce the next output. That is why it is fed back into the circuit.
- In the case of the 2-bit counter the output (i.e. the current count) is also the state of the counter. But we could have had other outputs that were not part of the state. E.g. A signal that indicated whether the current count is greater than 2.

Finite State Machines: Describing

circuit behavior over time

Symbol/ Circuit	
2 bit Counter	$\begin{array}{ll} S_{0}: 00 \\ S_{1}: 01 \end{array}$
	$S_{3}: 11$
\triangle	

State Diagrams: Describing circuit behavior over time

PI Q: What information is not explicitly indicated in the state diagram?
A. The input) on the circuit $[x]$ B. The outpuit of the circuit $[y]$
C. The time when state transitions
D. The current state of the circuit.
E. The next state of the circuit.

State diagram of the 2 bit counter

Finite State Machine

Implementing the 2 bit counter

Implementing the 2 bit counter

State Diagram

State Table

Implementing the 2 bit counter

PI Q: To obtain the outputs $\mathrm{Q}_{0}(\mathrm{t}+1)$ and $Q_{1}(t+1)$ from the inputs $Q_{1}(t)$ and $\mathrm{Q}_{0}(\mathrm{t})$ we need to use:
A. Combinational logic 60
B. Some other logic 40 j

$$
\begin{aligned}
& Y(t)=Q_{1}(t) \otimes \theta_{0}(t) \quad \bar{\theta}_{1} Q_{0}+\theta_{1} \bar{\theta}_{0} \\
& z(t)=\bar{\theta}_{0}(t)
\end{aligned}
$$

If we use 1 - fie flops. the n ext state follows $(y(t), Z(t))$

$$
Q_{1}(t+1)=Y(t) \quad \theta_{0}(t+1)=z(t)
$$

Implementing the 2 bit counter

PI Q: What is wrong with the 2-bit counter implementation shown above
A. The combinational circuit is incorrect
B. The circuit state changes correctly but continuously rather than at the rising edge of the clock signal
C. The output of the circuit is unreliable because inputs can get corrupted

$$
0_{0}(1)
$$

Note:

$$
\begin{array}{ll}
\leftarrow \theta_{0}(t) \longrightarrow & \begin{array}{l}
\theta_{0}(t+1) \\
-\theta_{1}(t)
\end{array} \\
\theta_{c}(t+1)
\end{array}
$$

Band on the current stats, ie. $\left(\theta_{0}(t), \theta_{1}(t)\right)$, in this clock cycle we will compute the inportsto the fie forms $(Y(1), Z(f))$ which will determine the Value of the state in the next clock cycle i.e.

$$
\left(Q_{0}(t+1), Q_{1}(t+1)\right)
$$

Implementing the 2 bit counter

	f		
$\mathbf{Q}_{\mathbf{1}}(\mathbf{t})$	$\mathbf{Q}_{\mathbf{0}}(\mathbf{t})$	$\mathbf{Q}_{\mathbf{1}}(\mathbf{t + 1})$	$\mathbf{Q}_{\mathbf{0}}(\mathbf{t + 1})$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

State Table

$$
\begin{aligned}
& \mathrm{Q}_{0}(\mathrm{t}+1)=\mathrm{Q}_{0}(\mathrm{t})^{\prime} \\
& \mathrm{Q}_{1}(\mathrm{t}+1)=\mathrm{Q}_{0}\left(\mathrm{t} \mathrm{Q}_{1}(\mathrm{t})^{\prime}+\mathrm{Q}_{0}(\mathrm{t})^{\prime} \mathrm{Q}_{1}(\mathrm{t})\right.
\end{aligned}
$$

We store the current state using D-flip flops so that:

- The inputs to the combinational circuit don't change while the next output is being computed
- The transition to the next state only occurs at the rising edge of the clock

Implementing the 2 bit counter

PI Q: When did we fix our choice of flip flops in the design process?
A When we drew the state diagram
B. When we wrote down the state table
C. When wrote the characteristic expression
D. When we implemented the circuit from the characteristic expression

Generalized Model of Sequential Circuits

Exter mol Modified 2 bit counter

Modified 2 bit counter

Characteristic Expression:

$$
\begin{array}{ll}
y(t)=Q_{0}(t) Q_{1}(t) & \\
Q_{0}(t+1)=D_{0}(t) & D_{0}(t)=\overline{x(t)} \cdot \overline{\theta_{0}(t)} \\
Q_{1}(t+1)=D_{1}(t) & D_{1}(t)=\bar{x}\left[Q_{0}(t) \uplus Q_{1}(t)\right.
\end{array}
$$

Modified 2 bit counter

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation Characteristic Expression:

$$
\begin{aligned}
& y(t)=Q_{1}(t) Q_{0}(t) \\
& Q_{0}(t+1)=D_{0}(t)=x(t)^{\prime} Q_{0}(t)^{\prime} \\
& Q_{1}(t+1)=D_{1}(t)=x(t)^{\prime}\left(Q_{0}(t) \oplus Q_{1}(t)\right)
\end{aligned}
$$

State table

$$
\begin{aligned}
& \text { State Assignment }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{Q}_{1}(\mathrm{t}) \mathrm{Q}_{0}(\mathrm{t})\left[\mathrm{Q}_{1}(\mathrm{t}+1) \mathrm{Q}_{0}(\mathrm{t}+1), \mathrm{y}(\mathrm{t})\right)\right] \quad \mathrm{S}_{3} \mathrm{l} \text { l } \\
& \text { Present State } \uparrow \text { Next State, Output }
\end{aligned}
$$

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

$$
\begin{aligned}
& y(t)=Q_{1}(t) \mathrm{Q}_{0}(\mathrm{t}) \\
& \mathrm{Q}_{0}(\mathrm{t}+1)=\mathrm{D}_{0}(\mathrm{t})=x(\mathrm{t})^{\prime} \mathrm{Q}_{0}(\mathrm{t})^{\prime} \\
& \mathrm{Q}_{1}(\mathrm{t}+1)=\mathrm{D}_{1}(\mathrm{t})=\mathrm{x}(\mathrm{t})^{\prime}\left(\mathrm{Q}_{0}(\mathrm{t}) \oplus \mathrm{Q}_{1}(\mathrm{t})\right)
\end{aligned}
$$

State table

input			State Assignment	${ }_{\text {PSput }}^{\text {input }}$		
PS	$\mathrm{x}=0$	$\mathrm{x}=1$	Let:	PS	$\mathrm{x}=0$	$\mathrm{x}=1$
00	01, 0	00, 0	$\mathrm{S}_{0}=00$	S_{0}	$\mathrm{S}_{1}, 0$	S_{0},
01	10, 0	00, 0	$\mathrm{S}_{1}=01$	S_{1}	$\mathrm{S}_{2}, 0$	S_{0},
10	11,0		$\mathrm{S}_{2}=10$	S_{2}	$\mathrm{S}_{3}, 0$	
11	00, 1		$\mathrm{S}_{3}=11$	S_{3}	S_{0}, 1	

Present State | Next State, Output

Remake the state table using symbols instead of binary code , e.g. ' 00 '

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

S	$\mathrm{PS}^{\text {input }}$	$\mathrm{x}=0$	$\mathrm{x}=1$
	S_{0}	$\mathrm{S}_{1}, 0$	$\mathrm{S}_{0}, 0$
	S_{1}	$\mathrm{S}_{2}, 0$	$\mathrm{S}_{0}, 0$
	S_{2}	$\mathrm{S}_{3}, 0$	$\mathrm{S}_{0}, 0$
	S_{3}	$\mathrm{S}_{0}, 1$	$\mathrm{S}_{0}, 1$

Given inputs and initial state, derive output sequence

Time	0	1	2	3	4	5
Input	0	1	0	0	0	-
State	S0					
Output						

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

$$
\mathbf{x} / \mathbf{y}
$$

input		$x=0$
PS	$x=1$	
$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}, 0$	$\mathrm{~S}_{0}, 0$
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}, 0$	$\mathrm{~S}_{0}, 0$
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}, 0$	$\mathrm{~S}_{0}, 0$
$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}, 1$	$\mathrm{~S}_{0}, 1$

Example: Given inputs and initial state, derive output sequence

Time	0	1	2	3	4	5
Input	0	1	0	0	0	-
State	S0	S1	S0	S1	S2	S3
Output	0	0	0	0	0	1

Example 3 Circuit with T Flip-Flops

Logic Diagram => Excitation Table => State Table

$\mathrm{y}(\mathrm{t})=\mathrm{Q}_{1}(\mathrm{t}) \mathrm{Q}_{0}(\mathrm{t})$
$\mathrm{T}_{0}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathrm{Q}_{1}(\mathrm{t})$
$\mathrm{T}_{1}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{Q}_{0}(\mathrm{t})$
$\mathrm{Q}_{0}(\mathrm{t}+1)=\mathrm{T}_{0}(\mathrm{t}) \mathrm{Q}^{\prime}{ }_{0}(\mathrm{t})+\mathrm{T}^{\prime}{ }_{0}(\mathrm{t}) \mathrm{Q}_{0}(\mathrm{t})$
$\mathrm{Q}_{1}(\mathrm{t}+1)=\mathrm{T}_{1}(\mathrm{t}) \mathrm{Q}^{\prime}{ }_{1}(\mathrm{t})+\mathrm{T}^{\prime}{ }_{1}(\mathrm{t}) \mathrm{Q}_{1}(\mathrm{t})$
Excitation Table:
Truth table of the F-F inputs

id	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{0}(\mathrm{t})$	x	$\mathrm{T}_{1}(\mathrm{t})$	$\mathrm{T}_{0}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{0}(\mathrm{t}+1)$	y
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

Excitation Table: iClicker

In excitation table, the inputs of the flip
flops are used to produce
A.The present state
B. The next state

Excitation Table =>State Table => State Diagram

id	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{0}(\mathrm{t})$	x	$\mathrm{T}_{1}(\mathrm{t})$	$\mathrm{T}_{0}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{0}(\mathrm{t}+1)$	y
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment
S0 00
S1 01
S2 10
S3 11

PS \backslash Input	$\mathrm{X}=0$	$\mathrm{X}=1$
S0		
S1		
S2		
S3		

Excitation Table =>State Table => State Diagram

id	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{0}(\mathrm{t})$	x	$\mathrm{T}_{1}(\mathrm{t})$	$\mathrm{T}_{0}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{0}(\mathrm{t}+1)$	y
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment S0 00
S1 01
S2 10
S3 11

PS\Input	$\mathrm{X}=0$	$\mathrm{X}=1$
S0	$\mathrm{S} 0,0$	$\mathrm{~S} 2,0$
S1	$\mathrm{S} 3,0$	$\mathrm{~S} 3,0$
S2	$\mathrm{S} 2,0$	$\mathrm{~S} 1,0$
S3	$\mathrm{S} 1,1$	$\mathrm{~S} 0,1$

Excitation Table =>State Table => State Diagram

id	$\mathrm{Q}_{1}(\mathrm{t})$	$\mathrm{Q}_{0}(\mathrm{t})$	x	$\mathrm{T}_{1}(\mathrm{t})$	$\mathrm{T}_{0}(\mathrm{t})$	$\mathrm{Q}_{1}(\mathrm{t}+1)$	$\mathrm{Q}_{0}(\mathrm{t}+1)$	y
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment S0 00
S1 01
S2 10
S3 11

PS \backslash Input	$\mathrm{X}=0$	$\mathrm{X}=1$
S0	$\mathrm{S} 0,0$	$\mathrm{~S} 2,0$
S1	$\mathrm{S} 3,0$	$\mathrm{~S} 3,0$
S2	$\mathrm{S} 2,0$	$\mathrm{~S} 1,0$
S3	$\mathrm{S} 1,1$	$\mathrm{~S} 0,1$

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

PS \backslash Input	$\mathrm{X}=0$	$\mathrm{X}=1$
S 0	$\mathrm{~S} 0,0$	$\mathrm{~S} 2,0$
S 1	$\mathrm{~S} 3,0$	$\mathrm{~S} 3,0$
S2	$\mathrm{S} 2,0$	$\mathrm{~S} 1,0$
S 3	$\mathrm{~S} 1,0$	$\mathrm{~S} 0,1$

Example: Output sequence

Time	0	1	2	3	4	5
Input	0	1	1	0	1	-
State	S0					
Output						

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

PS \backslash Input	$\mathrm{X}=0$	$\mathrm{X}=1$
S 0	$\mathrm{~S} 0,0$	$\mathrm{~S} 2,0$
S 1	$\mathrm{~S} 3,0$	$\mathrm{~S} 3,0$
S2	$\mathrm{S} 2,0$	$\mathrm{~S} 1,0$
S 3	$\mathrm{~S} 1,0$	$\mathrm{~S} 0,1$

Example: Output sequence

Time	0	1	2	3	4	5
Input	0	1	1	0	1	-
State	S0	S0	S2	S1	S3	S0
Output	0	0	0	0	1	0

Implementation

State Diagram => State Table => Logic Diagram

- Canonical Form: Mealy and Moore Machines
- Excitation Table
- Truth Table of the F-F Inputs
- Boolean algebra, K-maps for combinational logic
- Examples
- Timing

Canonical Form: Mealy and Moore Machines

Canonical Form: Mealy and Moore Machines

Mealy Machine: $y_{i}(t)=f_{i}(X(t), S(t))$
Moore Machine: $y_{i}(t)=f_{i}(S(t))$

$$
\mathrm{s}_{\mathrm{i}}(\mathrm{t}+1)=\mathrm{g}_{\mathrm{i}}(\mathrm{X}(\mathrm{t}), \mathrm{S}(\mathrm{t}))
$$

Mealy Machine

Moore Machine

